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Abstract: The one-step reaction produces 2,6-dimethoxyquinoline or 2,6-diethoxyquinoline in 30-
35% yields. The postulated mechanistic pathway involves the intermediacy of a radical cation generated by 
single electron transfer from the initially formed 2-alkoxyquinoline to molecular fluorine or to 2-alkoxy-A/-
fluoroquinolinium cation. 

The treatment of pyridines with elemental fluorine at low temperature generates the corresponding 

highly reactive /V-fluoropyridinium cations, the subsequent reactions of which with basic/nucleophilic species 

provide useful synthetic routes to various substituted pyridines (1). The postulated mechanistic pathways of 

the latter reactions involve proton abstraction at position 2 to give an ylide/carbene, single electron transfer 

(SET) from the nucleophile to give a radical, and the addition reaction of the nucleophile to the position 2 of 

the /V-fluoropyridinium cation. The addition reactions at position 4 have also been observed but are rare. 

This is due to the higher charge concentration at position 2 of the /V-fluoropyridinium cation. In particular (2), 

AMIuoroquinolinium cation (2 in Scheme) undergoes the addition reaction with methanol and then the 

resultant adduct 3 undergoes elimination of HF to give 2-methoxyquinoline (4a). Additional and previously 

unreported reactions of 3-methylquinoline (1b), 3-cyanoquinoline (1c), and 3-bromoquinoline (1d) with 

fluorine in methanol to furnish the respective 2-methoxyquinolines 4b-d and the synthesis of 2-

ethoxyquinoline (5) from quinoline in ethanol are also given in the Scheme. Although all these reactions 

produce a substantial amount of intractable tar, the one-step synthesis is experimentally simple and 

compounds 4a-d and 5 (yields 40-60%) are the only major, low molecular weight products. Therefore, their 

isolation is also simple (3). 

We noticed that the reactions of 1a and 1b are relatively efficient in the presence of 1.2-1.5 molar 

equivalents of elemental fluorine (-60 °C, 2h). With a greater excess of fluorine the yields of the 

corresponding alkoxyquinolines 4a,b and 5 decreased and a new product was observed by GC-MS analysis 

in each case. These new products were identified as 2,6-dialkoxyquinolines 10a,b and 11 (3,4) and they 

were the only major low molecular weight products after the mixtures had been allowed to stand at -20 °C for 

12h. By contrast, a similar treatment of 3-cyanoquinoline (1c) or 3-bromoquinoline (1d) with excess fluorine 

(up to 5 equiv.) in methanol gave the respective 2-methoxyquinolines 4c,d as the major products, and the 

corresponding dimethoxy derivatives were formed in less than 2% yield, as found by GC-MS analysis of the 

crude mixtures (5). 
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A reversible reaction is suggested because 
2-alkoxyquinolines, due to low basicity, do not form 
stable N-fluoroquinolinium cations (ref. 2) 

No. R1 R2 

4a, 10a Η Me 
4b, [10b] Me Me 
4c CN Me 
4d Br Me 
5,11 Η Et 

- Η 

10a,[b]; 11 

The one-step preparations of 2,6-dimethoxyquinoline (10a) and 2,6-diethoxyquinoline (11) (yields 

30-35%) are of synthetic value (3,4). Analysis of the reaction leading to 2,6-dimethoxy-3-methylquinoline 

(10b) revealed rapid formation of 2-methoxy-3-methylquinoline (4b) followed by slow conversion of 4b into 

10b. However, the decrease in 4b was paralleled by a several-fold smaller increase in 10b, which was in 

sharp contrast to the reactions of quinoline. Since the estimated yield of 10b in the mixture was only 10%, 

no attempts were made to isolate this product in an analytically pure form. The low yield of 10b is consistent 

with secondary transformations of methylquinolines 4b and 10b in the highly reactive environment of 

fluorine. 
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The exclusive 6-regioselectivity in the formation of 10a and 11 (and, apparently, for 10b) is not 

consistent with a nucleophile (alcohol) addition reaction to the N-fluoroquinolinium cation 8 derived from 4a. 

or 5. Such a reaction followed by elimination of HF (as shown for 1 in Scheme) would produce 2,4-, 2,5- or 

2,7-dialkoxyquinoline, none of which was found in the corresponding crude mixture. On the other hand, the 1 

reaction does appear to involve an electrophilic intermediate because the presence of an electron 

withdrawing bromo or cyano substituent in the quinoline strongly inhibits the formation of a dialkoxy 

derivative (5). 

These results can be explained in terms of an initial SET pathway in which the quinoline 4a, 5 

(electron donor) undergoes a reaction with elemental fluorine or N-fluoropyridinium cation 8 derived from 4a, 

5 (electron acceptor) to generate a radical cation 6. This reaction would be inhibited by electron-withdrawing 

substituents, as observed (5). The subsequent nucleophilic addition of alcohol with the electrophilic 

intermediate 6 would take place at position 6 because the resultant radical 7 is highly conjugated. The 

alternative addition to the position 8 to give a similarly conjugated radical is less likely for steric reasons. The 

subsequent SET of 7 would generate a well-stabilized cation 9. Deprotonation of 9 is suggested to give the 

observed product 10a, 11. 

Due to the high reactivity of elemental fluorine the mechanisms of its reactions with organic 

molecules are extremely difficult to study, and the literature is abundant with various mechanistic 

speculations. The many simplistic explanations reported in the early literature have recently been 

reexamined in favor of SET pathways (6). One major reason is that fluorine is the most electronegative 

element and, as such, it is a powerful electron acceptor. Evidence has been also been accumulating that N-

fluoropyridinium cations are excellent electron acceptors as well (7,8). 
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